

1 Overview

Action and Perception as Divergence Minimization (APD)...

- Map of **possible agent objectives** that correspond to different latent variables, target factorizations, and divergence measures
- Unified perspective on representation learning, infogain exploration, and empowerment
- Representation learning should be **paired** with infogain exploration for a temporally consistent objective
- World models as path toward adaptive infomax agents while making task rewards optional
- Future objectives should be derived from a joint divergence to facilitate comparison and make target explicit

4 Target Dependencies

Factorized Targets

 $\tau(x)\tau(z)$

Inputs and latents have zero mutual information under the target

Agent minimizes mutual information in the actual dist

Examples

 MaxEnt RL uses reward factor and action prior to solve the task while keeping actions as random as possible

Expressive Targets

 $\tau(x \mid z)\tau(z)$

Target knows or learns depen. between inputs and latents

Agent maximizes the mutual information in the actual dist

Examples

- World models learn representations that are informative of past inputs
- Reverse predictors learn skills that maximally influence future inputs

7 Types of Latents

Latent Variable

Actions

Skills

State Estimates

Dynamics Parameters

Past Infomax

N/A past actions are observed

N/A past skills are observed

State Estimation VAE, DVBF, SOLAR, PlaNet

System Identification PETS, Bayesian PlaNet

Belief over Policies **BootDQN, Bayesian DQN**

Empowerment & MaxEnt RL VIM, ACIE, EPC, SQL, SAC

Skill Discovery VIC, SNN, DIAYN, VALOR

State Information Gain NDIGO, DVBF-LM

Dynamics Information Gain VIME, MAX, Plan2Explore

Policy Information Gain BootDQN, Bayesian DQN

Action and Perception as Divergence Minimization Danijar Hafner¹², Pedro Ortega³, Jimmy Ba², Thomas Parr⁴, Karl Friston⁴, Nicolas Heess³

¹Google Brain ²University of Toronto ³DeepMind ⁴University College London

2 Agents with Latent Variables

Parameterize belief (incl actions) by ϕ

Future Infomax

5 Information Bounds

Minimizing joint KL to an expressive target...

- realizes the preferences expressed by the target
- maximizes variational bound on the **mutual information** between inputs and latents
- bound is tighter the better the target can express dependencies

 $\mathrm{KL}\big[p_{\phi}(x,z) \mid \mid \tau(x,z)\big] = \mathrm{E}\,\mathrm{KL}\big[p_{\phi}(z \mid x) \mid \mid \tau(z)\big] - \mathrm{E}\big[\ln\tau(x \mid z) - \ln p_{\phi}(x)\big]$ realizing latent preferences joint divergence

 $\operatorname{KL}\left[p_{\phi}(x,z) \mid | \tau(x,z)\right] = \operatorname{EKL}\left[p_{\phi}(x \mid z) \mid | \tau(x)\right] - \operatorname{E}\left[\ln\tau(z \mid x) - \ln p_{\phi}(z)\right]$ realizing input preferences joint divergence

8 Action Perception Cycle

Action and perception optimize the same objective but receive and affect different variables.

Under a unified target distribution...

- actions make the world consistent with the agent beliefs

action $\min_{\phi} \mathrm{KL} \left[\begin{array}{c} p_{\phi}(z \mid x) \\ p_{\phi}(x) \end{array} \right\| \left[\begin{array}{c} \tau(x, z) \\ \tau(x, z) \end{array} \right]$ beliefs inputs target perception

• perception makes the agent beliefs consistent with the world

3 Joint KL Minimization

toward a target distribution:

x lifetime trajectory of inputs

- z set of agent latents

6 Past and Future

Agents with expressive targets...

9 Niche Seeking

Minimizing a joint divergence also brings the marginals together

 $\mathrm{KL}[p_{\phi}(x,z) \| \tau(x,z)] \ge \mathrm{KL}[p_{\phi}(x) \| \tau(x)]$ The marginal target distribution over inputs is the marginal likelihood

The agent thus seeks out a large niche that it can inhabit and understand Models that assign high prob to more trajectories lead to larger niches

• infer latent representations that are **informative** of past inputs • explore future inputs that are **informative** of the representations

 $\mathbf{I}[x;z] = \mathbf{I}[x_{<};z] + \mathbf{I}[x_{>};z \mid x_{<}]$

The agent thus converges to an **ecological niche**... • See inputs propto how well the agent can learn to predict them • That is large because of the information gain exploration • That it can inhabit despite external perturbations

Project website with video: danijar.com/apd